Home
Class 12
MATHS
f(x)=int0^pi f(t) dt=x+intx^1 tf(t)dt, t...

`f(x)=int_0^pi f(t) dt=x+int_x^1 tf(t)dt,` then the value of `f(1)` is `1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If int_0^x f(t) dt = x + int_x^l tf (t) dt , then the value of f(1) is :

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is