Home
Class 11
MATHS
" Prove that "sin^(2)48^(@)-cos^(2)12^(@...

" Prove that "sin^(2)48^(@)-cos^(2)12^(@)=(sqrt(5)+1)/(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Prove that: sin^(2)42^(2)-cos^(2)78^(@)=(sqrt(5)+1)/(8)

Prove that: sin^(2)42^(0)-cos^(2)78^(0)=(sqrt(5)+1)/(8)

Prove that cos^(2)48^(@)-sin^(2)12^(@)=((sqrt5+1))/(8) .

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

cos^(2)48^(@)-sin^(2)12^(@)=?

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)(72^(@))-sin^(2)(60^(@))=(sqrt(5)-1)/(8)