Home
Class 12
MATHS
Prove that:(9pi)/8-9/4sin^(-1)(1/3)=9/4s...

Prove that:`(9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2sqrt(2))/3)`

Text Solution

AI Generated Solution

To prove that \(\frac{9\pi}{8} - \frac{9}{4} \sin^{-1}\left(\frac{1}{3}\right) = \frac{9}{4} \sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)\), we will start with the left-hand side (LHS) and simplify it step by step. ### Step 1: Start with the Left-Hand Side \[ \text{LHS} = \frac{9\pi}{8} - \frac{9}{4} \sin^{-1}\left(\frac{1}{3}\right) \] ### Step 2: Factor out \(\frac{9}{4}\) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: (9)/(8)-(9)/(4)sin^(-1)((1)/(3))=(9)/(4)sin^(-1)((2sqrt(2))/(3))

(9pi)/(8)-(9)/(4)sin^(-1)""(1)/(3)=(9)/(4)sin^(-1)\ (2sqrt(2))/(3)

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/(sqrt(5)))

Prove that: sin(9pi)/(10) + sin(13pi)/(10)=-1/2

Prove that sin^(-1)""1/3+sin^(-1)""1/(3sqrt11)+sin^(-1)""(3)/(sqrt11)=pi/2

Prove that: (i) "sin"^(2)24^(@)-"sin"^(2)6^(@)=(1)/(8)(sqrt(5)-1) (ii) "tan"9^(@)-"tan"27^(@)-"tan"63^(@)+"tan"81^(@)=4 .

Prove (9 pi) / (8) - (9) / (4) sin ^ (- 1) ((1) / (3)) = (9) / (4) sin ^ (- 1) (2 (sqrt (2)) / (3))

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that: sin^(2)(pi/8+A/2)-sin^(2)(pi/8-A/2)=1/sqrt(2)sinA

Prove that: (sin^(2)pi)/(18)+(sin^(2)pi)/(9)+(sin^(2)(7 pi))/(18)+(sin^(2)(4 pi))/(9)=2