Home
Class 11
MATHS
" (iy) "log(x)2*log(2x)2*log(2)4x>1...

" (iy) "log_(x)2*log_(2x)2*log_(2)4x>1

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the inequality: log_(x)2.log_(2x)2. log_(2)4x gt 1

Solve the inequality: log_(x)2.log_(2x)2. log_(2)4x gt 1

Solve log_(x)2log_(2x)2=log_(4x)2

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.

The solution set of log_(x)2 log_(2x)2 = log_(4x) 2 is :

53, Solution set of log_(x)2.log_(2x)2=log_(4x)2 is

(log_(2)x)^(2)+4(log_(2)x)-1=0

log_(2)(x+1)-log_(2)(3x-1)=2

Solve the following equations : (i) log_(x)(4x-3)=2 (ii) log_2)(x-1)+log_(2)(x-3)=3 (iii) log_(2)(log_(8)(x^(2)-1))=0 (iv) 4^(log_(2)x)-2x-3=0

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4