Home
Class 12
MATHS
[" Let "],[f(2)=4" and "f'(2)=4," then "...

[" Let "],[f(2)=4" and "f'(2)=4," then "lim_(x rarr2)],[(xf(2)-2f(x))/(x-2)=]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(2)=2 and f'(2)=1, then find lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2) = 4 and f^(')(2) =1 then lim_(x rarr 2) (x f(2)-2f (x))/(x-2)

lim_(x rarr2)(f(x)-f(2))/(x-2)=

If f (2) = 4 andf'(2) = 1, show that lim_(xrarr2)(xf(2)-2f(x))/(x-2)=2

If f(2) = 2 and f^(')(2) = 1 , then lim_(x rarr 2) (2x^(2)-4 f(x))/(x-2) =

Let f(2)=4 and f'(2)=4 . Then lim_(x->2)(xf(2)-2f(x))/(x-2) is equal to