Home
Class 11
MATHS
sec^2Asec^2B-sec^2Atan^2B-tan^2Asec^2B+t...

`sec^2Asec^2B-sec^2Atan^2B-tan^2Asec^2B+tan^2Atan^2B=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: tan^2Asec^2B-sec^2Atan^2B=tan^2A-tan^2B

sec^(2)A tan^(2) B-tan^(2)A sec^(2) B=

Prove: tan^(2)A sec^(2)B-sec^(2)A tan^(2)B=tan^(2)A-tan^(2)B

Prove that (i) (sin^(2)A cos^(2)B - cos^(2)A sin^(2) B )=(sin^(2)A- sin^(2)B) (ii) (tan^(2)A sec^(2)B - sec^(2)A tan^(2)B)=(tan^(2)A- tan^(2)B)

cosec^(2)Acot^(2)A-sec^(2)Atan^(2)A-(cot^(2)A-tan^(2))(sec^(2)Acosec^(2)A-1) =

Prove: (1-cos^2 A)cdot sec^2B + tan^2B (1-sin^2A) = sin^2A+tan^2B .

Prove that tan(A+B)/cot(A-B)=(tan^2A-tan^2B)/(1-tan^2Atan^2B)

Prove that: ("tan"(A+B))/("cot"(A-B))=\ (tan^2A-tan^2B)/(1-tan^2Atan^2B)

(sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1

(sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1