Home
Class 12
CHEMISTRY
Find the the reducation potential of the...

Find the the reducation potential of the half-cell
`Pt(s)|Cu^(2+)(aq., 0.22 M), Cu^(+)(aq., 0.043 M)`

A

`0.20 V`

B

`-0.20 V`

C

`0.30 V`

D

`-0.30 V`

Text Solution

AI Generated Solution

The correct Answer is:
To find the reduction potential of the half-cell `Pt(s)|Cu^(2+)(aq., 0.22 M), Cu^(+)(aq., 0.043 M)`, we will use the Nernst equation. Here are the steps to solve the problem: ### Step 1: Identify the half-reaction The half-reaction for the reduction process is: \[ \text{Cu}^{2+} + e^- \rightarrow \text{Cu}^{+} \] ### Step 2: Determine the standard reduction potential (E°) The standard reduction potential (E°) for the half-reaction is given as: \[ E° = 0.158 \, \text{V} \] ### Step 3: Write the Nernst equation The Nernst equation relates the cell potential (E) to the standard potential (E°) and the concentrations of the reactants and products: \[ E = E° - \frac{RT}{nF} \ln Q \] Where: - \( R \) is the universal gas constant (8.314 J/(mol·K)) - \( T \) is the temperature in Kelvin (assume 298 K if not provided) - \( n \) is the number of electrons transferred (1 for this half-reaction) - \( F \) is Faraday's constant (96485 C/mol) - \( Q \) is the reaction quotient ### Step 4: Calculate the reaction quotient (Q) The reaction quotient \( Q \) for the half-reaction is given by: \[ Q = \frac{[\text{Cu}^{+}]}{[\text{Cu}^{2+}]} \] Substituting the concentrations: \[ Q = \frac{0.043}{0.22} \] ### Step 5: Substitute values into the Nernst equation Using \( n = 1 \), \( R = 8.314 \, \text{J/(mol·K)} \), \( T = 298 \, \text{K} \), and \( F = 96485 \, \text{C/mol} \): \[ E = 0.158 - \frac{(8.314)(298)}{(1)(96485)} \ln\left(\frac{0.043}{0.22}\right) \] ### Step 6: Calculate the logarithmic term Calculate \( \ln\left(\frac{0.043}{0.22}\right) \): \[ \frac{0.043}{0.22} \approx 0.1955 \] \[ \ln(0.1955) \approx -1.626 \] ### Step 7: Substitute the logarithmic value into the Nernst equation Now substitute the logarithmic value back into the equation: \[ E = 0.158 - \frac{(8.314)(298)}{(96485)} (-1.626) \] ### Step 8: Calculate the potential Calculate the term: \[ \frac{(8.314)(298)}{(96485)} \approx 0.008314 \times 298 / 96485 \approx 0.0257 \] Now substitute: \[ E = 0.158 + (0.0257)(1.626) \] \[ E \approx 0.158 + 0.0419 \] \[ E \approx 0.1999 \, \text{V} \] ### Step 9: Final answer The reduction potential of the half-cell is approximately: \[ E \approx 0.20 \, \text{V} \]

To find the reduction potential of the half-cell `Pt(s)|Cu^(2+)(aq., 0.22 M), Cu^(+)(aq., 0.043 M)`, we will use the Nernst equation. Here are the steps to solve the problem: ### Step 1: Identify the half-reaction The half-reaction for the reduction process is: \[ \text{Cu}^{2+} + e^- \rightarrow \text{Cu}^{+} \] ### Step 2: Determine the standard reduction potential (E°) The standard reduction potential (E°) for the half-reaction is given as: ...
Promotional Banner

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    R SHARMA|Exercise Follow-up Test 6|12 Videos
  • ELECTROCHEMISTRY

    R SHARMA|Exercise Follow-up Test 7|12 Videos
  • ELECTROCHEMISTRY

    R SHARMA|Exercise Follow-up Test 4|10 Videos
  • COORDINATION COMPOUNDS

    R SHARMA|Exercise Archives|56 Videos
  • GENERAL PRINCIPALS AND ISOLATION OF ELEMENTS

    R SHARMA|Exercise Arechives|16 Videos

Similar Questions

Explore conceptually related problems

The potential of the cell V(s)|V^(3+)(aq., 0.0011 M) ||Ni^(2+)(aq., 0.24 M)||Ni(s) is

The potential of the following cell is 0.34 V at 25^(@)C calculate the standard reduction potential of the copper half cell Pt|H_(2)(1 atm)| H^(+)(1 M)||Cu^(2+)(1 M)|Cu

For the cell Cu (s) | Cu ^(2+) (aq) (0.1 M) || Ag ^(+) (aq) (0.01 M) | Ag (s) the cell potential E _(1) = 0.3095 V For the cell Cu (s) | Cu ^(+2) (aq) (0.01 M) || Ag ^(+) (aq)( 0. 001 M) | Ag (s) the cell potential = _______ xx 10 ^(-2) V. (Round off the Nearest Integer). [Use : (2.303 RT)/(F) =0.059 ]

Standard reduction potential of the half cell reactions are given below Co^(3+)(aq) + e^(1-) to Co^(2+)(aq) , E^0 = +1.81 V Au^(3+)(aq) + 3e^(1-) to Au(s) , E^0 = +1.40 V I_(2)(s) + 2e^(1-) to 2l^(1-)(aq) , E^0 = +0.54 V Cu^(2+)(aq) + 2e^(1-) to Cu(s) , E^0 = +0.34 V

The cell reaction of the galvanic cell: Cu(s)|Cu^(2+)(aq)||Hg^(2+)(aq)|Hg(l) is

Write down the half cell reactions and cell reaction for Daniell cell. Zn(s)|Zn^(2+)(aq)(1M) || Cu^(2+)(aq)(1M)/Cu(s)

Select the correct cell reaction of the cell Ag(s)|Ag^+(aq)"||"cu^(2+)(aq)"|"cu(s) :

Given that standard potential for the following half - cell reaction at 298 K, Cu^(+)(aq)+e^(-)rarr Cu(s), E^(@)=0.52V Cu^(2+)(aq)+e^(-)rarrCu^(+)(aq), E^(@)=0.16V Calculate the DeltaG^(@)(kJ) for the eaction, [2Cu^(+)(aq)rarr Cu(s)+Cu^(2+)]