Home
Class 14
MATHS
12," fuse differe for "(1)/(2)tan^(-1)x=...

12," fuse differe for "(1)/(2)tan^(-1)x=cos^(-1)[(1+sqrt(1+x^(2)))/(2sqrt(1+x^(2)))]^(1/2)

Promotional Banner

Similar Questions

Explore conceptually related problems

show that , (1) /(2) tan ^(-1) x = cos^(-1) sqrt((1+sqrt(1+x^(2)))/(2sqrt(1+x^(2)))).

Prove that : 1/2 tan^-1x = cos^-1{(1+sqrt(1+x^2))/(2sqrt(1+x^2))}^(1/2)

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.cos ^(-1) sqrt((1+sqrt( 1+x^(2)))/( 2sqrt(1+x^(2)))) is