Home
Class 12
MATHS
Solve the equations.sin(tan^(-1)x),|x|<1...

Solve the equations.`sin(tan^(-1)x),|x|<1`
(A) `x/(sqrt(1-x^2))`
(B) `1/(sqrt(1-x^2))`
(C) `1/(sqrt(1+x^2))`
(D) `x/(sqrt(1+x^2))`

Text Solution

AI Generated Solution

To solve the equation \( \sin(\tan^{-1} x) \) for \( |x| < 1 \), we can follow these steps: ### Step 1: Define the angle Let \( \theta = \tan^{-1}(x) \). By definition of the inverse tangent function, we have: \[ \tan(\theta) = x \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • LINEAR PROGRAMMING

    NCERT|Exercise SOLVED EXAMPLES|11 Videos

Similar Questions

Explore conceptually related problems

Differential coefficient of sec(tan^(-1)x) is (x)/(1+x^(2))( b) x sqrt(1+x^(2))(c)(1)/(sqrt(1+x^(2))) (d) (x)/(sqrt(1+x^(2)))

(tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

d/(dx)(sin^(-1)x+cos^(-1)x) is equal to : (A) (1)/(sqrt(1-x^(2))), (B) (2)/(sqrt(1-x^(2))), (C) 0 (D) sqrt(1-x^(2))

Solve the equation: tan^(-1)sqrt(x^(2)+x)+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to sin^(-1)(2x sqrt(1-x^(2))), if -(1)/(sqrt(2))

Solve: sin^-1 (x/(sqrt(1+x^2)))- sin (1/(sqrt(1+x^2)))= sin^-1 ((1+x)/(1+x^2))

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then