Home
Class 12
MATHS
Tan^(-1)(x+sqrt(1+x^(2)))=...

Tan^(-1)(x+sqrt(1+x^(2)))=

Promotional Banner

Similar Questions

Explore conceptually related problems

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

Simplify y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

Find (dy)/(dx) of y=tan^(-1)(x/(1+sqrt(1-x^2)))

Show that : tan (cos^(-1)x) = (sqrt(1-x^(2)))/x

int (tan (sin^(-1)x))/(sqrt(1-x^(2)))dx=

y=tan^(-1)(x/(1+sqrt(1-x^2))) find dy/dx

(iv) If y=tan^(-1)(x/(1+sqrt(1-x^(2))))+sin(2tan^(-1)sqrt((1-x)/(1+x))) , then find (dy)/(dx) for x epsilon(-1,1)