Home
Class 12
MATHS
lim(n->oo)(1*1!+2*2!+.......n*n!)/((n+1)...

`lim_(n->oo)(1*1!+2*2!+.......n*n!)/((n+1)!)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (1 * 1! + 2 * 2! + ...... n * n!) / ((n + 1)!)

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))