Home
Class 10
MATHS
g(x)=2x^(2)-x+3,f(x)=6x^(5)-x^(4)+4x^(3)...

g(x)=2x^(2)-x+3,f(x)=6x^(5)-x^(4)+4x^(3)-5x^(2)-x-15

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether g(x)=2x^(2)-x+3 is a factor of f(x)=6x^(5)-x^(4)+4x^(3)-5x^(2)-x-15 by applying the division algorithm.

Check whether g(x)=2x^2-x+3 is a factor of f(x)=6x^5-x^4+4x^3-5x^2-x-15 by applying the division algorithm.

Let f(x)=x^(8)-6x^(7)+5x^(6)+x^(4)-5x^(3)-x^(2)-3x+3AA x in R then f(5) is equal to :-

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

(5x^(2)-4+6x^(3))-:(-2+3x)

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

Subtract: 7x^(4)-5x^(3)+4x^(2)+3x-3 from 6x^(4)-4x^(3)-8x^(2)-2x+7

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)