Home
Class 12
MATHS
12.quad |[1,x,x^(2)],[x^(2),1,x],[x,x^(2...

12.quad |[1,x,x^(2)],[x^(2),1,x],[x,x^(2),1]|=(1-x^(3))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

show that |[1,x,x^2],[x^2,1,x],[x,x^2,1]| = (1-x^3)^2

By using properties of determinants. Show that: |[1,x,x^2],[x^2, 1,x],[x,x^2, 1]|=(1-x^3)^2

By using properties of determinants, show that : |[1,x,x^2],[x^2,1,x],[x,x^2,1]| = (1-x^3)^2

Using properties of determinants, prove the following: |[1,x,x^2],[x^2, 1,x],[x,x^2,1]|=(1-x^3)^2

Using properties of determinants, prove the following: |[1,x,x^2],[x^2, 1,x],[x,x^2,1]|=(1-x^3)^2

Using properties of determinants prove the following. abs[[1,x,x^2],[x^2,1,x],[x,x^2,1]]=(1-x^3)^2

Prove the following : [[1,x,x^2],[x^2,1,x],[x,x^2,1]]=(1-x^3)^2

By using properties of determinants , show that : {:[( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) ]:} =( 1-x^(3)) ^(2)

By using properties of determinants , show that : {:[( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) ]:} =( 1-x^(3)) ^(2)

By using properties of determinants , show that : {:|( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) |:} =( 1-x^(3)) ^(2)