Home
Class 14
MATHS
(1)/(log x)-(1)/((log x)^(2))...

(1)/(log x)-(1)/((log x)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(2)^(e) ((1)/(ln x) - (1)/((ln x)^(2)))dx=

Evalaute: int((log x-1)/(1+(log x)^(2)))^(2)dx

int{((log x-1)/(1+(log x)^(2))}^(2)dx is equal to

If f(x) = cos^(-1) [(1-(log x)^(2))/(1+(log x)^(2))] , then f^(')(e) =

If y=cos ^(-1) ((log x^(2))/( 1+(log x)^(2))) ,then (dy)/(dx)=

If x^(y)=e^(x-y), then (dy)/(dx) is (1+x)/(1+log x)(b)(1-log x)/(1+log x)(c) not defined (d) (log x)/((1+log x)^(2))

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

Evaluate: int{(1)/(log_(e)x)-(1)/((log_(e)x)^(2))}dx

The value of x satisfies the equation (1-2(log x^(2)))/(log x-2(log x)^(2))=1