Home
Class 12
MATHS
" If "k>0,|z|=|w|=k" and "alpha=(z-bar(w...

" If "k>0,|z|=|w|=k" and "alpha=(z-bar(w))/(k^(2)+2bar(w))," then find "Re(alpha)

Promotional Banner

Similar Questions

Explore conceptually related problems

If k>0,|z|=|w|=k, and alpha=(z-bar(w))/(k^(2)+zbar(w))Re(alpha)

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0 , |z|=\w\=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0,|z|=backslash w backslash=k, and alpha=(z-bar(w))/(k^(2)+zbar(w)) then Re(alpha)(A)0(B)(k)/(2)(C)k(D) None of these

Suppose z is a complex number such that z ne -1, |z| = 1 and arg(z) = theta . Let w = (z(1-bar(z)))/(bar(z)(1+z)) , then Re(w) is equal to

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If |z|=k and w=(z-k)/(z+k) , then Re (w)=