Home
Class 11
MATHS
If tan^2 alpha tan^2 beta + tan^2 beta t...

If `tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2 alpha + 2 tan^2 alpha tan^2 beta tan^2 gamma = 1` then ` sin^2 alpha + sin^2 beta + sin^2 gamma` =

Text Solution

Verified by Experts

We know, `tan^2 alpha = sin^2alpha/cos^2alpha = sin^2alpha/(1-sin^2alpha)`
Let `sin^2alpha = x`
Then, `tan^2alpha = x/(1-x)`
Similarly, if `sin^2beta = y, then, tan^2beta = y/(1-y)`
Similarly, if `sin^2gamma= z, then, tan^2gamma = z/(1-z)`
Now, putting these values in the given equation,
`2(x/(1-x))(y/(1-y))(z/(1-z))+(x/(1-x))(y/(1-y))+(y/(1-y))(z/(1-z))+(z/(1-z))(x/(1-x)) = 1`
`=>(xy)/((1-x)(1-y))+(yz)/((1-y)(1-z))+(zx)/((1-z)(1-x)) = 1- (2xyz)/((1-x)(1-y)(1-z))`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(2)alpha tan^(2)beta+tan^2betatan^(2)lamda+tan^(2)lambdatan^(2)alpha+2tan^(2)alpha tan^(2) beta tan^(2)lamda = 1 then sin^2alpha+sin^2beta+sin^2lamda =

If 2 tan^2 alpha tan^2 beta tan^2 gamma+ tan^2 alpha tan^2 beta+ tan^2 beta tan^2 gamma+ tan^2 gamma tan^2 alpha=1 , prove that sin^2 alpha+ sin^2 beta+ sin^2 gamma =1 .

2tan ^ (2) alpha tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha find the value of sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma

If tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha+2tan^(2)alpha tan^(2)beta tan^(2)gamma= 1 .(where alpha,beta,gamma in R-{(n pi)/(2)},n in I ) Value of cos2alpha+cos2 beta+cos2gamma is equal to -

If 2tan^(2)alpha tan^(2)beta tan^(2)gamma+tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha=1 prove that sin^(2)alpha+sin^(2)beta+sin^(2)gamma=1

Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)((4)/(5)) and gamma=tan^(-1)((8)/(15)) then cot alpha+cot beta+cot gamma=cot alpha cot beta cot gammatan alpha tan beta+tan beta tan gamma+tan alpha tan gamma=1tan alpha+tan beta+tan gamma=tan alpha tan beta tan gammacot alpha cot beta+cot beta cot gamma+cot alpha cot gamma=1

If (tan(alpha + beta - gamma))/(tan(alpha - beta + gamma)) = (tan gamma)/(tan beta), (beta ne gamma) , then sin 2alpha + sin 2beta + sin 2gamma=