Home
Class 12
MATHS
If n in N, prove that 1/(log2x)+1/(log3...

If `n in N`, prove that `1/(log_2x)+1/(log_3x)+1/(log_4x)++(1)/(log_n x)=1/(log_(n !)x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: 1/(log_2n)+1/(log_3n)+1/(log_4n)+…+1/(log_43n)=1/(log_(43!)n)

Prove that: 1/(log_2N)+1/(log_3N)+1/(log_4N)+…+1/(log_(2011)N)=1/(log_(2011!)N)

If n >1 ,then prove that 1/((log)_2n)+1/((log)_3n)+.......+1/((log)_(53)n)=1/((log)_(53 !)n)dot

If n>1, then prove that(1)/(log_(2)n)+(1)/(log_(3)n)+...+(1)/(log_(53)n)=(1)/(log_(53)n)

(1)/(log_(2)x)+(1)/(log_(3)x)+......(1)/(log_(43)x)=(1)/(log_(43)!x)

Show that: (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+...+(1)/(log_(43)n)=(1)/(log_(43!)n)

If n>1 then prove that (1)/(log_(2)n)+(1)/(log_(3)n)+............+((1)/(log_(53)n)=(1)/(log_(53!)n)

If ngt1 then prove that 1/(log_2 n )+1/(log_3 n)+.................+1/log_(53) n =1/(log_(53!) n

(1)/(log_(2)N)+(1)/(log_(3)N)+(1)/(nog_(4)N)+...+(1)/(log_(2011)N)=(1)/(log_(2011)N)

Prove that log_a x=log_(a^2) x^2=log_(a^n) x^n