Home
Class 11
MATHS
2^(sqrt(sin^(2)x-2sin x+5))*(1)/(4^(sin^...

2^(sqrt(sin^(2)x-2sin x+5))*(1)/(4^(sin^(2)y))<=1

Promotional Banner

Similar Questions

Explore conceptually related problems

if (2sqrt(sin^(2)x-2sin x+5))/(4^( sin ^(2)y))<=1 then which option is correct.

All the pairs (x, y) that satisfy the inequality 2 ^(sqrt(sin^(2) x - 2 sin x + 5) ) . (1)/(4 ^(sin^(2) y)) le 1 also satisfy the equation :

If 2^(sqrt(sin^(2)x-2sin x+5)-2sin^(3)y)<=1 then number of ordered pairs (x,y) in [0,2 pi]

Evaluate the value of lim_(n rarr(pi)/(2))tan^(2)x sqrt((2sin^(2)x+3sin x+4)-sqrt(sin^(2)x+sin x+2))

int((sqrt(2sin2x+4cos^(2)x+sin4x)-2x)/(1+sin2x))dx

lim_(x to 0) (x +2 sin x)/(sqrt(x^(2)+2 sin x + 1)-sqrt(sin^(2) x - x+ 1)) is

The value of lim_(x rarr(pi)/(2))tan^(2)x(sqrt(2sin^(2)x+3sin x+4)-sqrt(sin^(x)+6sin x+2)) is equal to

The value of the limit lim_(x rarr(pi)/(2))((4sqrt(2)(sin3x+sin x))/((2sin2x sin(3x/2)+cos(5x/2))-(sqrt(2)+sqrt(2)cos2x+cos(3x/2))))=

Solev (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .