Home
Class 12
MATHS
Let fK(x)""=1/k(s in^k x+cos^k x) where ...

Let `f_K(x)""=1/k(s in^k x+cos^k x)` where `x in R` and `kgeq1` . Then `f_4(x)-f_6(x)` equals (1) `1/6` (2) `1/3` (3) `1/4` (4) `1/(12)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f_k(x)=(1)/(k)(sin^k x+ cos^k x) " where " x in R and k ge 1 . Then f_4(x)-f_6(x) equals

Let f_k(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f_4(x) - f_6(x) equals

Let f_k(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f_4(x) - f_6(x) equals

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and k ge1 , then f_(4)(x)-f_(6)(x) equals

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and k>=1. Then f_(4)(x)-f_(6)(x) equals

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and kge1 then f_(4)(x)-f_(6)(x) equals