Home
Class 12
MATHS
If f(x) and g(x) are non- periodic funct...

If f(x) and g(x) are non- periodic functions, then `h(x)=f(g(x))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are periodic functions with periods 7 and 11, respectively, then the period of f(x)=f(x)g(x/5)-g(x)f(x/3) is

If f(x) and g(x) are periodic functions with periods 7 and 11, respectively, then the period of F(x)=f(x)g(x/5)-g(x)f(x/3) is

If f(x) and g(x) are periodic functions with periods 7 and 11, respectively, then the period of f(x)=f(x)g(x/5)-g(x)f(x/3) is

If y=f(x) is a periodic function with period K, then g(x)=f(ax+b) is a Periodic function,The period of g(x) is

If f(x) and g(x) are two functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) then I: f(x) is an even function II : g(x) is an odd function III : Both f(x) and g(x) are neigher even nor odd.

Let f(x) and g(x) be two functions such that g(x)=([x]f(x))/([x]f(x)) and g(x) is a periodic function with fundamental time period 'T', then minimum value of 'T is

If f(x) and g(x) are be two functions with all real numbers as their domains, then h(x) =[f(x) + f(-x)][g(x)-g(-x)] is:

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :

If f(x) be a function such that f(-x)= -f(x),g(x) be a function such that g(-x)= -g(x) and h(x) be a function such that h(-x)=h(x) , then choose the correct statement: I. h(f(g(-x)))=-h(f(g(x))) II. f(g(h(-x)))=f(g(h(x))) III. g(f(-x))=g(f(x))