Home
Class 11
MATHS
If f(0)=0,f^(prime)(0)=2, then the deriv...

If `f(0)=0,f^(prime)(0)=2,` then the derivative of `y=f(f(f(x)))` at `x=0` is 2 (b) 8 (c) 16 (d) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0)=0,f'(0)=2, then the derivative of y=f(f(f(x))) at x=0 is 2(b)8(c)16 (d) 4

If f(0)=0,f'(0)=2 then the derivative of y=f(f(f(x))) at x=0 is

If f(0)=0,f'(0)=2 then what is the derivative of y = f(f(f(f(x)))) at x=0.

If f(0) = 0 , f '(0) = 2 , then the derivative of y = f(f(f(f(x)))) at x = 0 in

If f(0) = 0 ,f'(0) = 2 , then the value differentiable at x = 0 of function y = f[f{f(x)}] is _

A function f: R->R satisfies sinxcosy(f(2x+2y)-f(2x-2y)=cosxsiny(f(2x+2y)+f(2x-2y))dot If f^(prime)(0)=1/2,t h e n (a) f''(x)=f(x)=0 (b) 4f''(x)+f(x)=0 (c) f''(x)+f(x)=0 (d) 4f''(x)-f(x)=0

If f(x)={{:(2-x,xlt0),(x^2-4x+2,xge0)} then the value f(f(f(1))) is a) gt0 b) lt 0 c) =0 d)does not exist

Consider the function f(x)={xsinpi/x ,forx >0 0,forx=0 The, the number of point in (0,1) where the derivative f^(prime)(x) vanishes is 0 (b) 1 (c) 2 (d) infinite

Consider the function f(x)={xsinpi/x ,forx >0 ,forx=0 The number of point in (0,1) where the derivative f^(prime)(x) vanishes is (a) 0 (b) 1 (c) 2 (d) infinite