Home
Class 12
MATHS
[" 81."int(x^(4)+1)/(x^(6)+1)dx=],[" 1) ...

[" 81."int(x^(4)+1)/(x^(6)+1)dx=],[" 1) "tan^(-1)x+(1)/(3)tan^(-1)(x)+c],[" 2) "tan^(-1)x+(1)/(3)tan^(-1)(x^(2))+c],[" 3) "tan^(-1)x-(1)/(3)tan^(-1)(x)+c],[" 4) "tan^(-1)x+(1)/(2)tan^(-1)(x^(3))+c]

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(4)+1)/(x^(6)+1)dx(1)tan^(-1)x-tan^(-1)x^(3)+c(2)tan^(-1)x-(1)/(3)tan^(-1)x^(3)+c(3)tan^(-1)x+tan^(-1)x^(3)+c(4)tan^(-1)x+(1)/(3)tan^(-1)x^(3)+c

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan ^(-1) (1/3)+tan ^(-1) (1/5)+tan ^(-1) (1/7)=tan ^(-1) x, then x=

If int (x^(4) + 1)/(x^(6) + 1) dx = A tan^(-1) x + B tan^(-1) x^(3) + c , then (A,B) =

Solve tan^(-1)(x-1) +tan^(-1) x +tan^(-1)(x+1)= tan^(-1)(3x) .

If 3 tan ^(-1)((1)/(2+sqrt(3)))-tan ^(-1) (1)/(x)=tan ^(-1) (1)/(3) then x=

If tan^(-1)(3)+tan^(-1)(x)=tan^(-1)(8) then x=

If tan^(-1)(3)+tan^(-1)(x)=tan^(-1)(8)," then "x=

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

If: tan^(-1)(1/3) + tan^(-1)( 3/4) - tan^(-1)(x/3) =0 , then: x=