Home
Class 11
MATHS
In a triangle ABC sin (A/2) sin (B/2) si...

In a triangle ABC `sin (A/2) sin (B/2) sin (C/2) <= 1/8`

Text Solution

Verified by Experts

We know, arithmatic mean is always greater than or equal to geometric mean.
`:. (sin^2(A/2)sin^2(B/2)sin^2(C/2))^(1/3) le 1/3(sin^2(A/2)+sin^2(B/2)+sin^2(C/2))->(1)`
Also, we know, `sin^2(A/2)+sin^2(B/2)+sin^2(C/2) ge 3/4`
`:. (sin^2(A/2)sin^2(B/2)sin^2(C/2))^(1/3) le 1/3(3/4)`
`=>(sin^2(A/2)sin^2(B/2)sin^2(C/2))^(1/3) le 1/4`
`=>(sin^2(A/2)sin^2(B/2)sin^2(C/2)) le (1/4)^3`
`=>sin(A/2)sin(B/2)sin(C/2) le (1/64)^(1/2)`
`=>sin(A/2)sin(B/2)sin(C/2) le 1/8`
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I In any triangle ABC a cos A+b cos B+c cos C le s. Statement II In any triangle ABC sin ((A)/(2))sin ((B)/(2))sin ((C)/(2))le 1/8

Statement I In any triangle ABC a cos A+b cos B+c cos C le s. Statement II In any triangle ABC sin ((A)/(2))sin ((B)/(2))sin ((C)/(2))le 1/8

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

Statement I If in a triangle ABC sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angle must be 90^(@). Statement II In any triangles ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

Ina triangle ABC (sin A) / (2) (sin B) / (2) (sin C) / (2) <= (1) / (8)

In a triangle ABC, sin^(2)A + sin^(2)B + sin^(2)C = 2 , then the triangle is

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .