Home
Class 12
MATHS
If the number of solutions of sin^-1 x+...

If the number of solutions of `sin^-1 x+|x|=1 cos^-1 x+|x|=1, tan^-1 x+|x|=1, cot^-1x+|x|=1, sec^-1 x+|x|=1 and cosec^-1 x+|x|=1` are `n_1,n_2,n_3,n_4,n_5,n_6` respectively, then the value of `n_1+n_2+n_3+n_4+n_5+n_6` is

Promotional Banner

Similar Questions

Explore conceptually related problems

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

Prove the following: sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x

Integral of the form tan^(2m+1) x sec^(2n+1) x or cot^(2m+1) x cosec^(2n+1) x m ,n are natural number

If x^2-x+1=0 then the value of sum_[n=1]^[5][x^n+1/x^n]^2 is:

Prove that: sin (n + 1) x sin (n + 2)x + cos (n + 1) x cos (n + 2) x = cos x