Home
Class 12
MATHS
The period of the function f(x)=2^sqrt(2...

The period of the function `f(x)=2^sqrt(2/(1-cos2x))+4^sqrt((1+tan^2x)/4)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=sqrt(4-x^(2))+sqrt(x^(2)-1) is

The domain of the function f(x)=sqrt((1)/((x|-1)cos^(-1)(2x+1)tan3x)) is

The domain of the function f(x)=sqrt(1/((x|-1)cos^(- 1)(2x+1)tan3x)) is

The range of the function f(x) = sqrt(4 - x^2) + sqrt(x^2 - 1) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x)=sqrt(cos^(-1)((1-|x|)/(2))) is

Find the range of the function f(x)=(x^(4)-sqrt(2x)+2)/(x^(4)-sqrt(2x)+1)

The minimum value of the function f(x)=(sin x)/(sqrt(1-cos^(2)x))+(cos x)/(sqrt(1-sin^(2)x))+(tan x)/(sqrt(sec^(2)x-1))+(cot x)/(sqrt(csc^(2)x-1))

The domain of the function f defined by : f(x)=sqrt(4-x)+(1)/(sqrt(x^(2)-1)) is equal to :