Home
Class 12
MATHS
If f(x) and g(x) are periodic functions...

If `f(x)` and `g(x)` are periodic functions with the same fundamental period where `f(x)=sinalpha x+cos alpha x` and `g(x)=|sinx|+|cosx|`, then `alpha` is equal to (1) 0 (2) 2 (3) 4 (4) 8

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are periodic functions with periods 7 and 11, respectively, then the period of f(x)=f(x)g(x/5)-g(x)f(x/3) is

If f(x) and g(x) are periodic functions with periods 7 and 11, respectively, then the period of f(x)=f(x)g(x/5)-g(x)f(x/3) is

If f(x) and g(x) are periodic functions with periods 7 and 11, respectively, then the period of F(x)=f(x)g(x/5)-g(x)f(x/3) is

Statement-1 : f(x) = [{x}] is a periodic function with no fundamental period. and Statement-2 : f(g(x)) is periodic if g(x) is periodic.

Statement-1 : f(x) = [{x}] is a periodic function with no fundamental period. and Statement-2 : f(g(x)) is periodic if g(x) is periodic.

Fundamental period of the function f(x) = cos (sinx) + cos(cosx) is :

lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is 4pi , then the value of a is/are

lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is 4pi , then the value of a is/are

If the fundamental period of function f(x)=sin x+cos(sqrt(4-a^(2)))x is 4 pi, then the value of a is/are

If the fundamental period of function f(x)=sinx+cos(sqrt(4-a^(2)))x " is " 4pi , then the value of a is/are