Home
Class 12
MATHS
If in a A B C ,(a^2-b^2)/(a^2+b^2)=(sin...

If in a ` A B C ,(a^2-b^2)/(a^2+b^2)=(sin(A-B))/(sin(A+B)` , prove that it is either a right angled or an isosceles triangle.

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a hat harr ABC,(a^(2)-b^(2))/(a^(2)+b^(2))=(sin(A-B))/(sin(A+B)), prove that it is either a right angled or an isosceles triangle.

in triangleABC if (a^2+b^2)/(a^2-b^2)=sin(A+B)/sin(A-B) then prove that it is either a right angled or an isosceles triangle.

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In any triangle.i(a^(2)-b^(2))/(a^(2)+b^(2))=(sin(A-B))/(sin(A+B)), then prove that the triangle is either right angled or isosceles.