Home
Class 12
MATHS
The circles ax^(2)+ay^(2)+2g(1)x+2f(1)y+...

The circles `ax^(2)+ay^(2)+2g_(1)x+2f_(1)y+c_(1)=0" and "bx^(2)+by^(2)+2g_(2)x+2f_(2)y+c_(2)=0`
`(ane0and bne0)` cut orthogonally, if

Promotional Banner

Similar Questions

Explore conceptually related problems

The circles ax^(2)+ay^(2)+2g_(1)x+2f_(1)y+c_(1)=0 and bx^(2)+by^(2)+2g_(2)x+2f_(2)y+c_(2)=0 ( a ne 0 and b ne 0 ) cut orthogonally if

The locus of the centre of the circle which cuts the circles x^(2)+y^(2)+2 g_(1) x+2 f_(1) y+c_(1)=0 x^(2)+y^(2)+2 g_(2) x+2 f_(2) y+c_(2)=0 orthogonally is

If circles x^(2) + y^(2) + 2g_(1)x + 2f_(1)y = 0 and x^(2) + y^(2) + 2g_(2)x + 2f_(2)y = 0 touch each other, then

If circles x^(2) + y^(2) + 2g_(1)x + 2f_(1)y = 0 and x^(2) + y^(2) + 2g_(2)x + 2f_(2)y = 0 touch each other, then

The circles ax^2+ay^2+2g_1 x +2f_1 y+c_1 = 0 and bx_2+by^2+2g_2x+2f_2y+c_2=0 a ne 0 and b ne 0 0cut orthogonally if

Show that the circle passing through the origin and cutting the circles x^(2)+y^(2)-2a_(1)x-2b_(1)y+c_(1)=0 and x^(2)+y^(2)-2a_(2)x-2b_(2)y+c_(2)=0 orthogonally is det[[c_(1),a_(1),b_(2)c_(1),a_(1),b_(2)c_(2),a_(2),b_(2)]]=0