Home
Class 12
MATHS
Let lambda "and" alpha be real. Let S de...

Let `lambda "and" alpha` be real. Let S denote the set of all values of `lambda ` for which the system of linear equations
`lambda x+(sinalpha)y+(cos alpha)z=0`
`x+(cos alpha) y+(sin alpha) z=0`
-x+`(sin alpha) y-(cos alpha) z=0`
has a non- trivial solution then S contains

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

Let lambda and alpha be real. The set of all values of λ for which the system of linear equations lambda x+(sin alpha)y+(cos alpha)z=0 x+(cos alpha)y+(sin alpha)z=0 -x +(sin alpha)y-(cos alpha)z=0 has a non trivial solution is

Let lambda and alpha be real.Find the set of all values of lambda for which the system of linear equations lambda x+(sin alpha)y+(cos alpha)z=0,x+(cos alpha)y+(sin alpha)z=0,quad -x+(sin alpha)y-(cos alpha)z=0

Let lambda and alpha be real. Find the set of all values of lambda for which the system of linear equations lambdax + ("sin"alpha)y + ("cos" alpha)z =0 , x + ("cos"alpha)y + ("sin" alpha) z =0 and -x + ("sin" alpha)y -("cos" alpha)z =0 has a non-trivial solution. For lambda =1 , find all values of alpha .

The value of alpha for which the system of linear equations: x+(sin alpha)y+(cos alpha)z=0,x+(cos alpha)y+(sin alpha)z=0,-x+(sin alpha)y+(-cos alpha)z=0 has a non - trivial solution could be