Home
Class 12
MATHS
[" If "z" is a complex number,then "],["...

[" If "z" is a complex number,then "],[" A) "|z^(2)|>|z|^(2)],[" B) "|z^(2)|=|z|^(2)],[" C) "|z^(2)|<|z|^(2)],[" D) "z^(2)>=|z|^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If z is a complex number,then |z|^(2)>|z|^(2) b.|z|^(2)=|z|^(2) c.|z|^(2) =|z|^(2)

If z is a complex number, then a. |z|^2>|z^2| b. |z|^2=|z^2| c. |z|^2<|z^2| d. |z|^2geq|z^2|

If z_(1) and z_(2) are two complex numbers,then (A) 2(|z|^(2)+|z_(2)|^(2)) = |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) (B) |z_(1)+sqrt(z_(1)^(2)-z_(2)^(2))|+|z_(1)-sqrt(z_(1)^(2)-z_(2)^(2))| = |z_(1)+z_(2)|+|z_(1)-z_(2)| (C) |(z_(1)+z_(2))/(2)+sqrt(z_(1)z_(2))|+|(z_(1)+z_(2))/(2)-sqrt(z_(1)z_(2))|=|z_(1)|+|z_(2)| (D) |z_(1)+z_(2)|^(2)-|z_(1)-z_(2)|^(2) = 2(z_(1)bar(z)_(2)+bar(z)_(1)z_(2))

If z is a complex number satisfying z^(4)+z^(3)+2 z^(2)+z+1=0 then |z|=

For any two complex numbers z_(1) and z_(2) |z_(1)+z_(2)|^(2) =(|z_(1)|^(2)+|z_(2)|^(2))

If z^(2)+z+1=0 where z is a complex number, then the value of (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+...+(z^(6)+(1)/(z^(6)))^(2) is

If z_(-)1 and z_(-)2 are any two complex numbers show that |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)=2|z_(1)|^(2)+2|z_(2)|^(2)

If z is a complex number satisfying z^(4) + z^(3) + 2z^(2) + z + 1 = 0 then |z| is equal to