Home
Class 12
MATHS
STATEMENT 1 : The value of int0^1tan^(-1...

STATEMENT 1 : The value of `int_0^1tan^(-1)((2x-1)/(1+x-x^2))` `dx=0` STATEMENT 2 : `int_a^bf(x)dx=int_0^bf(a+b-x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^1 tan^(-1) ((2x-1)/(1+x-x^2))dx is:

STATEMENT 1: The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx=0 STATEMENT 2:int_(a)^(b)f(x)dx=int_(0)^(b)f(a+b-x)dx

The value of int_0^(1) tan^(-1) ((2x-1)/(1+x-x^(2))) dx is

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

int_(0)^(1)tan^(-1)(1-x+x^(2))dx

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

The value of I = int_0^(1) x|x-1/2|dx is