Home
Class 12
MATHS
|2^(x+1)-1|+|2^(x+1)+1|=2^(|x+1|)...

`|2^(x+1)-1|+|2^(x+1)+1|=2^(|x+1|)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve abs(2^(x+1)-1)+abs(2^(x+1)+1) = 2^abs(x+1) .

Let x_(1) , x_(2) , x_(3) be the solution of tan^(-1) ((2x + 1)/(x +1 )) + tan ^(-1) ((2x - 1)/( x -1 )) = 2 tan ^(-1) ( x + 1) " where x_1 2x_(1) + x_(2) + x_(3)^(2) is equal to

Show that 1/(x+1)+2/(x^2+1)+4/x^4+1)+…..+2^n/(x^2^n+1)= /(x-1)- 2^(n+1)/(x^2(n+1) -1)

Show that 1/(x+1)+5/(x^2+1)+4/x^4+1)+…..+2^n/(x^2^n+1)= /(x-1)- 2^(n+1)/(x^2(n+1) -1)

Prove that : tan^-1 [frac { (1+x)^(1/2) - (1-x)^(1/2)}{ (1+x)^(1/2) + (1-x)^(1/2)}]=frac{pi}{4}-frac{1}{2} cos^-1x .

(x-1) / (2x + 1) + (2x + 1) / (x-1) = (5) / (2), x! =-(1) / (2), 1

Solve for x : (x - 1)/(2x + 1) + (2x + 1)/(x -1) = 2 , where x ne - (1)/(2) , 1

If x-(1)/(x)=1 , then what is the value of ((1)/(x-1)-(1)/(x+1)+(1)/(x^2 +1)-(1)/(x^2 -1)) ?

Examine the continuity of the following function at the given point : f(x) = {(x, 0 le x < 1/2),(1, x = 1/2),(1-x, 1/2 < x < 1):} at x = 1/2 .

The points (x +1, 2), (1, x +2), ((1)/(x+1),(2)/(x+1)) are collinear, then x is equal to