Home
Class 12
MATHS
If log(x+y)=log(xy)+a,"show that"(dy)/(d...

If `log(x+y)=log(xy)+a,"show that"(dy)/(dx)=-(y^(2))/(x^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log (x+y) =log (xy ) +a, then (dy)/(dx) =

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))=

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)