Home
Class 12
MATHS
[" 4.The vectors "vec a" and "vec b" are...

[" 4.The vectors "vec a" and "vec b" are nen colliniest.Find for what value of "x" ,the vectors "],[vec c=(x-2)vec a+vec b" and "vec d={2x+1)vec a-vec b" are collinates "?]

Promotional Banner

Similar Questions

Explore conceptually related problems

Vectors vec aa n d vec b are non-collinear. Find for what value of x vectors vec c=(x-2) vec a+ vec b and vec d=(2x+1) vec a- vec b are collinear?

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

Vectors vec a and vec b are non-collinear.Find for what value of n vectors vec c=(n-2)vec a+vec b and vec d=(2n+1)vec a-vec b are collinear?

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

The vectors vec(a) " and " vec(b) are non-collinear. Find for what value of x, the vectors vec(c)=(x-7)vec(a)+2vec(b) "and " vec(d)=(2x+1)vec(a)-vec(b) are collinear.

If vec a and vec b are non-collinear vectors,find the value of x for which the vectors vec alpha=(2x+1)vec a-vec b and vec beta=(x-2)vec a+vec b are collinear.

If vec a and vec b are non-collinear vectors,then the value of x for which vectors vec alpha=(x-2)vec a+vec b and vec beta=(3+2x)vec a-2vec b are collinear,is given by

If vec(a) and vec(b) are non-collinear vectors find the value of x for which vectors vec(alpha)=(x-2)vec(a)+vec(b) and vec(beta)=(3+2x)vec(a)-2vec(b) are collinear.

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""X vec c"" =vec b""X vec d""=""a n d"" vec adot vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b