Home
Class 11
MATHS
If f(x)=|x|^(|sinx|), then find f^(prime...

If `f(x)=|x|^(|sinx|),` then find `f^(prime)(-pi/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=xsinx, then find f^(prime)(pi/2)

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

If f(x)=|cosx-sinx| , find f^(prime)(pi/6) and f^(prime)(pi/3) .

If f(x)=|cos x-sinx| then find f ' ((pi)/(6))

If f(x)=|x|^(|sinx|) , then f'((pi)/(4)) equals

If f(x)=|x|^(|sinx|) , then f'((pi)/(4)) equals

If f(x)=|cosx-sinx| ,find f^(prime)(pi/6) and f^(prime)(pi/3)dot

If f(x)=|x|^(|sinx|) then f^1(-pi/4) is equal to

If f(x)=|cosx| , find f^(prime)(pi/4) and f^(prime)((3pi)/4) .