Home
Class 12
MATHS
The line x-y+2=0 touches the parabola y^...

The line `x-y+2=0` touches the parabola `y^2 = 8x` at the point (A) `(2, -4)` (B) `(1, 2sqrt(2))` (C) `(4, -4 sqrt(2)` (D) `(2, 4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The line 4 x+6 y+9=0 touches the parabola y^(2)=4 x at the point

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

Radius of the circle that passes through the origin and touches the parabola y^2=4a x at the point (a ,2a) is (a) 5/(sqrt(2))a (b) 2sqrt(2)a (c) sqrt(5/2)a (d) 3/(sqrt(2))a

Radius of the circle that passes through the origin and touches the parabola y^2=4a x at the point (a ,2a) is (a) 5/(sqrt(2))a (b) 2sqrt(2)a (c) sqrt(5/2)a (d) 3/(sqrt(2))a

Radius of the circle that passes through the origin and touches the parabola y^(2)=4ax at the point (a,2a) is (a) (5)/(sqrt(2))a (b) 2sqrt(2)a (c) sqrt((5)/(2))a (d) (3)/(sqrt(2))a

The line 2x-y+4=0 cuts the parabola y^(2)=8x in P and Q. The mid-point of PQ is (a) (1,2)(b)(1,-2)(c)(-1,2)(d)(-1,-2)

The line 2x−y+4=0 cuts the parabola y^2=8x in P and Q . The mid-point of PQ is (a) (1,2) (b) (1,-2) (c) (-1,2) (d) (-1,-2)

If the line 2x+sqrt(6)y=2 touches the hyperbola x^2-2y^2=4 , then the point of contact is (-2,sqrt(6)) (b) (-5,2sqrt(6)) (1/2,1/(sqrt(6))) (d) (4,-sqrt(6))