Home
Class 12
MATHS
A function f(x) is defined for all real ...

A function f(x) is defined for all real x and satisfied f(x +y) = f(xy) , `AA` x, y. If f(1) = -1, then f(2006) equals

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) is defined for all real x .If f(x+y)=f((xy)/(4))AA x y and f(-4)=-4 then |f(2016)| is

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f : R -> R^+ satisfies f(x+y)= f(x) f(y) AA x in R If f'(0)=2 then f'(x)=

If f (x) a polynomial function satisfying f (x) f (y) = f (x) + f(y) + f (xy) all real x and y and f(3) = 10, then f (4) – 8 is equal to

Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfies f(x/y)=f(x)-f(y) for all x,y and f(e)=1. Then

Let f be a function satisfying f(x+y)=f(x) *f(y) for all x,y, in R. If f (1) =3 then sum_(r=1)^(n) f (r) is equal to

A function f: RrarrR satisfies the equation f(x) f(y) - f(xy) = x+ y, AAx,y in R and f(1) gt 0 , then