Home
Class 12
MATHS
f(x)={2(x+1) ; x le -1 , sqrt(1-x^2) ; -...

`f(x)={2(x+1) ; x le -1 , sqrt(1-x^2) ; -1 < x < 1 and |||x|-1|-1| ; x >= 1,` then :

Promotional Banner

Similar Questions

Explore conceptually related problems

f (x)= {{:(2(x+1),,, x le -1),( sqrt(1- x^(2)),,, -1 lt x lt 1), (|||x|-1|-1|,,, x ge1 ):} , then:

f (x)= {{:(2(x+1),,, x le -1),( sqrt(1- x^(2)),,, -1 lt x lt 1), (|||x|-1|-1|,,, x ge1 ):} , then:

If f(x)={:{(x^2", "x le 1),( x^2-x+1"," x gt1):} then show that f(x) is not differentiable at x=1 .

If f(x)={:{(x^2", "x le 1),( x^2-x+1"," x gt1):} then show that f(x) is not differentiable at x=1 .

if f(x) =[underset(-x " ", " " x gt 1) (-sqrt(1-x^(2))" "," " 0 le x le 1), then

If f(x)=sin^(-1)(sqrt(3)/2x-1/2sqrt(1-x^(2))), -1/2 le x le 1 , then f(x) is equal to

If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2

If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2