Home
Class 13
MATHS
[" 58.If "|z-1|<=2" and "| omega z-1-ome...

[" 58.If "|z-1|<=2" and "| omega z-1-omega^(2)|=a" (where "omega" is a cube root "],[" of unity),then complete set of values of "a" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1) = 2 - i , z_(2) = 1 + i , " find " |(z_(1) + z_(2) + 1)/( z_(1) -z_(2) + 1)|

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=.......=|z_n|=1, prove that |z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)

If |z_(1)|=|z_(2)|=......=|z_(n)|=1, prove that |z_(1)+z_(2)+z_(3)++z_(n)|=(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))++(1)/(z_(n))

If |z_(1)|=|z_(2)|=....|z_(n)|=1 , then show that, |z_(1)+z_(2)+z_(3)+....z_(n)|= |(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))+...+(1)/(z_(n))|

If |z_(1)|=|z_(2)|=...............=|z_(n)|=1 then |(1)/(z_(1))+(1)/(z_(2))+.........+(1)/(z_(n))|

If |z_(1)| = |z_(2)| = 1, z_(1)z_(2) ne -1 and z = (z_(1) + z_(2))/(1+z_(1)z_(2)) then