Home
Class 11
MATHS
" Find "*n'," if "lim(x rarr2)(x^(n)-2^(...

" Find "*n'," if "lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80,n in N

Promotional Banner

Similar Questions

Explore conceptually related problems

find n in N, if lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80

lim_(x rarr3)(x^(n)-3^(n))/(x-3)=405 find n>0

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

Find the value of n, if lim_(xto2) (x^(n)-2^(n))/(x-2)=80 , n in N .

If lim_(x rarr 3)(x^n-3^n)/(x-3)=108 , and n in N , find n.

lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80 amd m in N, then find the value of n

If lim_(x rarr 2) [(x^(n)-2^(n))/(x-2)]=32 , then find the value of n.

If lim_(x rarr4)[(x^n-4^n)/(x-4)] = 48 and n in N , find n.

lim_(x rarr oo) (1+2/n)^(2n)=

lim_ (x rarr a) (x ^ (n) -a ^ (n)) / (xa) = n * a ^ (n-1)