Home
Class 11
MATHS
" for "x:log^(2)(4-x)+log(4-x)*log(x+(1)...

" for "x:log^(2)(4-x)+log(4-x)*log(x+(1)/(2))-2log^(2)(x+(1)/(2))=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:|log^(2)(4-x)+log(4-x)*log(x+(1)/(2))-2log^(2)(x+(1)/(2))=

(log_(4)x-2)*log_(4)x=(3)/(2)(log_(4)x-1)

log x-(1)/(2)log(x-(1)/(2))=log(x+(1)/(2))-(1)/(2)log(x+(1)/(8))

log(x+1)^(x^(2))=4log(x+1)

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

log(x-1)+log(x-2)lt log(x+2)

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

Find the x satisfying the equation log^(2)(1+(4)/(x))+log^(2)(1-(4)/(x+4))=2log^(2)((2)/(x-1)-backslash1)

Solve for x:(log)_(4)(x^(2)-1)-(log)_(4)(x-1)^(2)=(log)_(4)sqrt((4-x)^(2))

The possible value of x satisfying the equation log_(2)(x^(2)-x)log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is