Home
Class 11
MATHS
Given that sin theta = 12/13,0 ltthetalt...

Given that `sin theta = 12/13,0 ltthetaltpi,` then `(5sin(alpha + theta) - 12cos(alpha + theta)) cosec alpha` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

sin(3 theta+alpha)+sin(3 theta-alpha)+sin(alpha-theta)-sin(alpha+theta)=cos alpha

sin theta+sin2 theta+sin3 theta=sin alpha and cos theta+cos2 theta+cos3 theta=cos alpha then theta is equal to

sin(3theta+alpha)+sin(3theta-alpha)+sin(alpha-theta)-sin(alpha+theta)=cosalpha

sin(3theta+alpha)+sin(3theta-alpha)+sin(alpha-theta)-sin(alpha+theta)=cosalpha

sin(3theta+alpha)+sin(3theta-alpha)+sin(alpha-theta)-sin(alpha+theta)=cosalpha

If sin theta+sin2 theta+sin3 theta=sin alpha and cos theta+cos2 theta+cos3 theta=cos alpha, then theta is equal to

If sin theta+sin2theta+sin3theta=sin alpha and cos theta+cos 2theta+cos3theta=cos alpha , then theta is equal to

If sin theta+sin2theta+sin3theta=sin alpha and cos theta+cos 2theta+cos3theta=cos alpha , then theta is equal to

If sin theta+sin2theta+sin3theta=sin alpha and cos theta+cos 2theta+cos3theta=cos alpha , then theta is equal to

Prove that : 2 sin^2 theta + 4 cos (theta + alpha) sin alpha sin theta + cos 2 (alpha + theta) is independent of theta.