Home
Class 12
MATHS
The number of integers in the range of f...

The number of integers in the range of function `f(x)= [sinx] + [cosx] + [sinx + cosx]` is (where `[.]`= denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Find the Range of function f(x) = [|sin x| + |cosx |] , where [.] denotes are greatest integer function , is :

If [2sinx]+[cosx]=-3 then the range of the function f(x)=sinx+sqrt3cosx in [0, 2pi] is, (where [.] denotes the greatest integer function)

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

Range of f(x) =[1+sinx]+[cosx-1]+[tan^(- 1)x] AA x in [0,2pi] where [] denotes the greatest integer function is

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :