Home
Class 12
MATHS
tan^(6)(pi)/(9)-33tan^(4)(pi)/(9)+27tan^...

tan^(6)(pi)/(9)-33tan^(4)(pi)/(9)+27tan^(2)(pi)/(9)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

"tan"^(6) (pi)/(9)-33 "tan"^(4)(pi)/(9) +27 "tan"^(2)(pi)/(9)=

3tan^(6)((pi)/(18))-27tan^(4)((pi)/(18))+33tan^(2)((pi)/(18)) equals -

tan^(6)""pi/9 - 33tan^(4)""pi/9 + 27tan^(2)""pi/9 equals :

tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c) 3 (d) 9

log_(9)tan((pi)/(6))

The numerical value of tan(pi/3)+2tan((2pi)/3)+4tan((4pi)/3) is equal to

tan(pi/4+theta)tan((3pi)/4+theta) is equal to

The value of the equation tan^(6)(20^(@))-33tan^(4)(20^(@))+27tan^(2)(20^(@)) is