Home
Class 12
MATHS
Let a, b, c, d be real numbers such tha...

Let `a, b, c, d` be real numbers such that `1/(a+omega)+1/(b+omega)+1/(c+omega)=2/omega` where `omega` is non real cube root of unity choose the correct answer. `abc+bcd+acd+abd` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate |(1, omega, omega^(2)),(omega, omega^(2),1),(omega^(2),1,omega)| , where omega is a cube root of unity.

What is sqrt((1+_(omega)^(2))/(1+_(omega))) equal to, where omega is the cube root of unity ?

If omega is a non real cube root of unity, then (a+b)(a+b omega)(a+b omega^2)=

18.Prove that det[[b,a,cb,a,cc,b,a]]=(a+b+c)(a+b omega+c omega^(2))(a+b omega^(2)+c omega): where ,omega is a nonreal cube root of unity.

|{:(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega):}|=0 where omega is an imaginary cube root of unity.

If omega is a non real cube root of unity then (a+b)(a+b omega)(a+b omega^(2)) is

If omega is a non real cube root of unity, then (a+b)(a+b(omega))(a+b(omega)^2) is

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

Show that det ([1,omega,omega^(2)omega,omega^(2),1omega,omega^(2),1omega^(2),1,omega])=0 where omega is the non-real cube root of unity =0 where omega is