Home
Class 12
MATHS
The value of alpha such that sin^(-1)2/(...

The value of `alpha` such that `sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),sin^(-1)alpha` are the angles of a triangle is `(-1)/(sqrt(2))` (b) `1/2` (c) `1/(sqrt(3))` (d) `1/(sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of alpha such that sin^(-1)(2)/(sqrt(5)),sin^(-1)(3)/(sqrt(10)),sin^(-1)alpha are the angles of a triangle is (-1)/(sqrt(2))quad ( b ) (1)/(2)(c)(1)/(sqrt(3))(d)(1)/(sqrt(2))

The value of alpha so that sin^(-1)((2)/(sqrt(5))) , sin^(-1)((3)/(sqrt(10))) and sin^(-1)alpha are the angles of a Delta is

sin ^(-1) (sqrt(3))/(2) + sin ^(-1) sqrt(2/3)=

The value of sin(1/4sin^(-1)(sqrt(63))/8) is 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

The value of "sin"(31)/(3)pi is a) (sqrt3)/(2) b) (1)/(sqrt2) c) (-sqrt3)/(2) d) (-1)/(sqrt2)

The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)sqrt2)} is

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3) then