Home
Class 12
MATHS
" (ii) "(3x-x^(3))/(1-3x^(2))+(3y-y^(3))...

" (ii) "(3x-x^(3))/(1-3x^(2))+(3y-y^(3))/(1-3y^(2))+(3z-z^(3))/(1-3z^(2))=((3x-x^(3))/(1-3x^(2)))((3y-y^(3))/(1-3y^(2)))((3z-z^(3))/(1-3z^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

(3x-x^(3))/(1-3x^(2))+(3y-y^(3))/(1-3y^(2))+(3z-z^(3))/ (1-3z^(2))=((3x-x^(3))/(1-3x^(2)))((3z-z^(3))/(1-3z^(2) ))(((3y-y^(3))/(1-3y^(2))))

If x+y+z=xyz , prove that: a) (3x-x^(3))/(1-3x^(2))+(3y-y^(3))/(1-3y^(2))+(3z-z^(3))/(1-3z^(2))= (3x-x^(3))/(1-3x^(2)).(3y-y^(3))/(1-3y^(2)).(3z-z^(3))/(1-3z^(2)) b) (x+y)/(1-xy) + (y+z)/(1-yz)+(z+x)/(1-zx)= (x+y)/(1-xy) .(y+z)/(1-yz).(z+x)/(1-zx)

If x + y + z = xyz , prove that (3x -x^(3))/ (1-3x^(2)) + (3y -y^(3))/(1- 3y^(2)) +(3z -z^(3))/(1- 3z^(2)) = (3x -x^(3))/(1-3x)^(2) * (3y- y^(3))/(1-3x)^(2)* (3z- z^(3))/(1-3z)^(2) .

If x+y+z=xyz , show that : (3x-x^3)/(1-3x^2) + (3y-y^3)/(1-3y^2) + (3z-z^3)/(1-3z^2) = (3x-x^3)/(1-3x^2) . (3y-y^3)/(1-3y^2) . (3z-z^3)/(1-3z^2)

If x+y+z=xyz then prove that (3x-x^3)/(1-3x^2)+(3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2)=(3x-x^3)/(1-3x^2).(3y-y^3)/(1-3y^2).(3z-z^3)/(1-3z^2)

If x +y+ z=xyz , prove that : (3x-x^3)/(1-3x^2)+ (3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2)= (3x-x^3)/(1-3x^2). (3y-y^3)/(1-3y^2).(3z-z^3)/(1-3z^2) .

If x+y+z=xyz , prove that (3x-x^3)/(1-3x^2)+(3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2) = (3x-x^3)/(1-3x^2) cdot(3y-y^3)/(1-3y^2)cdot(3z-z^3)/(1-3z^2)

The image of the line (x-1)/(3)=(y-3)/(1)=(z-4)/(-5) in the plane 2x-y+z+3=0 is the line (1)(x+3)/(3)=(y-5)/(1)=(z-2)/(-5) (2) (x+3)/(-3)=(y-5)/(-1)=(z+2)/(5) (3) (x-3)/(3)=(y+5)/(1)=(z-2)/(-5) (3) (x-3)/(-3)=(y+5)/(-1)=(z-2)/(5)

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)