Home
Class 12
MATHS
If f(x)=[1/(ln(x^2+e)]]+1/(1+x^2) where ...

If `f(x)=[1/(ln(x^2+e)]]+1/(1+x^2)` where [.] is greatest integer function then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|]) (where[.] is greatest integer function), then -

Let f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|]) (where[.] is greatest integer function), then -

The range of f(x)=(sin pi [x^(2)+1])/(x^(4)+1) is , where [.] is greatest integer function

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then