Home
Class 9
MATHS
y(" fiii "a^(2)-b^(2)+c^(2)-1+2b-2ac...

y(" fiii "a^(2)-b^(2)+c^(2)-1+2b-2ac

Promotional Banner

Similar Questions

Explore conceptually related problems

(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

If (a^(2)-bc)/(a^(2) +bc) + (b^(2)-ac)/(b^(2) + ac) + (c^(2)-ab)/(c^(2)+ab)= 1 then find (a^(2))/(a^(2) + bc) + (b^(2))/(b^(2) + ac) + (c^(2))/(c^(2) +ab)= ?

If in a triangle ABC/_B=60^(@), then (A) (a-b)^(2)=c^(2)-ab(B)(b-c)^(2)=a^(2)-bc(C)(c-a)^(2)=b^(2)-ac(D)a^(2)+b^(2)+c^(2)=2b^(2)+ac^(2)

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] and a^(2)+b^(2)+c^(2)=1 , then A^(2)=

If a^(x)=b^(y)=c^(2) and b^(2)=ac, prove that y=(2xz)/(x+z)

If a:b=b:c,(:thenbackslash a^(4):b^(4) would be equal to ac:b^(2) b.a^(2):c^(2) c.c^(2):a^(2) d.b^(2):ac

Using the properties of determinant, prove that |(a^(2) +1, ab, ac),(ab, b^(2) + 1, bc),(ac, bc, c^(2)+1)| = 1+a^(2) + b^(2) + c^(2) .

If alpha,beta are the zeros of the polynomial f(x)=ax^(2)+bx+c, then (1)/(a^(2))+(1)/(beta^(2))=(b^(2)-2ac)/(a^(2)) (b) (b^(2)-2ac)/(c^(2))(c)(b^(2)+2ac)/(a^(2))(d)(b^(2)+2c)/(c^(2))

If the roots of the equation ax^(2)+bx+c=0 are of the form (k+1)/k and (k+2)/(k+1), then (a+b+c)^(2) is equal to 2b^(2)-ac b.a62 c.b^(2)-4ac d.b^(2)-2ac