Home
Class 12
MATHS
[" Given that "|-|=4" and "ampz=(5 pi)/(...

[" Given that "|-|=4" and "ampz=(5 pi)/(6)" then "z=],[a)-2sqrt(3)+2iquad " b) "2sqrt(3)+2iquad " c) "2sqrt(3)-2i]

Promotional Banner

Similar Questions

Explore conceptually related problems

If z is a complex number such that |z|=4 and arg(z)=(5 pi)/(6), then z is equal to -2sqrt(3)+2i b.2sqrt(3)+i c.2sqrt(3)-2i d.-sqrt(3)+i

If z is a complex number such that |z|=4 and a r g(z)=(5pi)/6 , then z is equal to -2sqrt(3)+2i b. 2sqrt(3)+i c. 2sqrt(3)-2i d. -sqrt(3)+i

If z is a complex number such that |z|=4 and a r g(z)=(5pi)/6 , then z is equal to -2sqrt(3)+2i b. 2sqrt(3)+i c. 2sqrt(3)-2i d. -sqrt(3)+i

If |z-3i|=3 and ampz in(0,(pi)/(2)), then cot(ampz)-(theta)/(z) is eqaul to

sqrt(3i)+sqrt(-3i)=(i)+-2sqrt(3)(ii)+-sqrt(6)(iii)3(iv)3i

If z(2-2 sqrt(3) i)^(2)=i(sqrt(3)+i)^(4) then arg z=

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

Maximum value of |z+1+i|, where z in S is (a) sqrt(2) (b) 2 (c) 2sqrt(2) (d) 3sqrt(2)

If z(2-i2sqrt(3))^(2)=i(sqrt(3)+i)^(4), then amplitude of z is

Values (s)(-i)^(1/3) is/are (sqrt(3)-i)/2 b. (sqrt(3)+i)/2 c. (-sqrt(3)-i)/2 d. (-sqrt(3)+i)/2